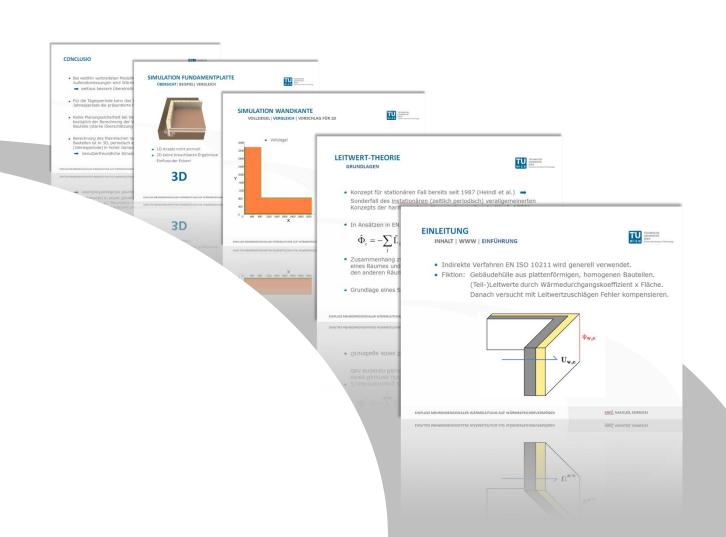
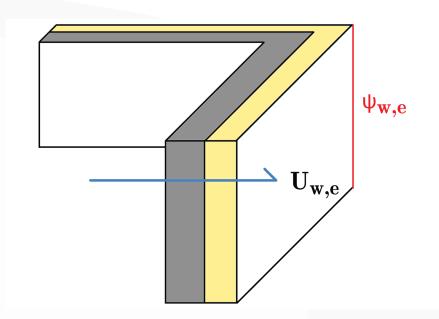
BAUSIM 2012


EINFLUSS MEHRDIMENSIONALER WÄRMELEITUNG AUF DAS WÄRMESPEICHERVERMÖGEN VON BAUKONSTRUKTIONEN

Klaus Kreč, <u>Joachim Nackler</u>, Tomasz Kornicki

INHALT | WWW | EINFÜHRUNG

INHALT | WWW | EINFÜHRUNG



- Wärmebrücken werden heute meist zeitunabhängig behandelt
 Effekte der Wärmespeicherung bleiben dabei unberücksichtigt.
- Anhand der verallgemeinerten Leitwert-Theorie wird gezeigt, wie stark die Wärmespeicherung den Wärmedurchgang beeinflussen kann.
- Detaillierte Behandlung des Spezialfalls Wandkante
 Vorschlag zu korrekteren 1D Ersatz-Modellierung von Wänden

INHALT | WWW | EINFÜHRUNG

- Indirektes Verfahren der EN ISO 10211 wird generell verwendet.
- Fiktion: Gebäudehülle plattenförmige, homogen geschichtete Bauteile.
 (Teil-)Leitwerte: Wärmedurchgangskoeffizient x Fläche.
 Kompensation der Fehler mittels Leitwertzuschlägen.

INHALT | WWW | EINFÜHRUNG

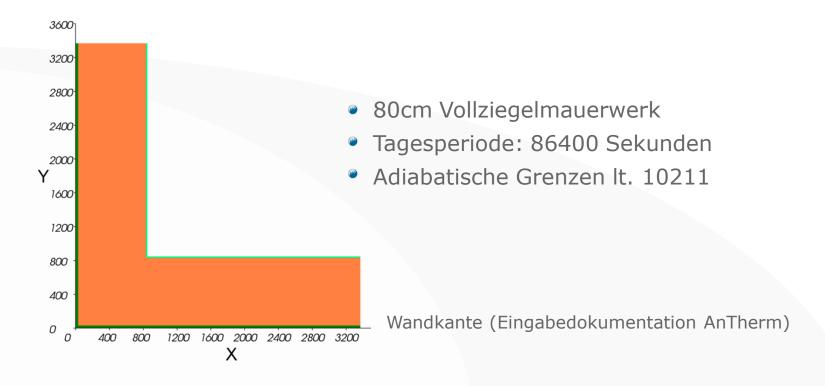
Indirektes Verfahren

Einfache Handhabung

- Mehrdeutigkeit nur korrekt wenn gleiche Annahmen bei Psi-Wert Ermittlung und 1D Modell
- Korrektur nur stationär Einfluss mehrdimensionaler Wärmeleitung auf Wärmespeicherfähigkeit bleibt unberücksichtigt!

LEITWERT-THEORIE

GRUNDLAGEN


- Konzept für stationären Fall bereits seit 1987 (Heindl et al.) →
 Sonderfall des instationären (zeitlich periodisch) verallgemeinerten
 Konzepts der harmonischen, thermischen Leitwerte (Kreč, 1993)
- Zusammenhang zwischen zeitlichen Verlauf des Wärmeverlusts eines Raumes und den zeitlichen Verläufen der Lufttemperaturen in den anderen Räumen. (Ist in Ansätzen in EN ISO 13786 verankert).

$$\hat{\Phi}_{i} = -\sum_{j} \tilde{L}_{i,j} \cdot \hat{\Theta}_{j}$$

Grundlage für Simulationsprogramm für 3D-thermische Modelle

VOLLZIEGEL | VERGLEICH | VORSCHLAG FÜR 1D

VOLLZIEGEL | VERGLEICH | VORSCHLAG FÜR 1D

	AUSSEN	INNEN
AUSSEN		4,27
INNEN	4,27	

Stationärer Leitwert

	AUSSEN	INNEN
AUSSEN		5,27
INNEN	5,27	

Stationär: $\Psi = 4,27 - 5,27 = -1,00 \text{ Wm}^{-1}\text{K}^{-1}$ (Außenmaß)

 $\Psi = 0,32 \text{ Wm}^{-1}\text{K}^{-1}$ (Innenmaß)

IM 1D Ersatzmodell wird Wärmeverlust stark überschätzt!

VOLLZIEGEL | VERGLEICH | VORSCHLAG FÜR 1D

AUSSENMASSBEZUG

	AUSSEN	INNEN	
AUSSEN	-41,55 -29,25 j	0,019 - 0,019 j	
INNEN	0,02 - 0,02 j	-21,37 – 7,80 j	

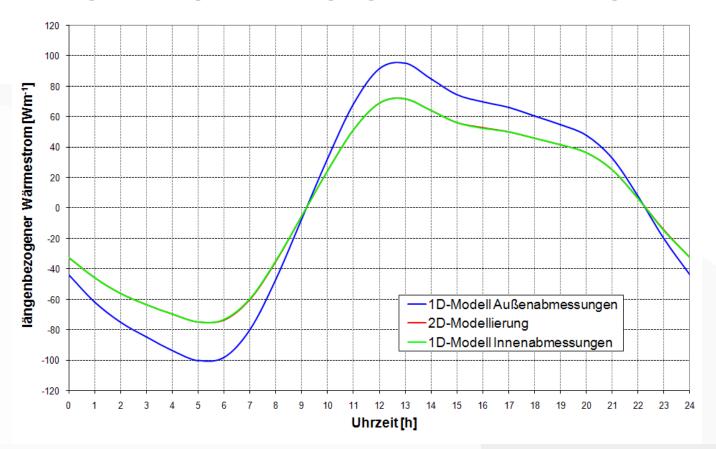
Harmonisch thermische Leitwerte (1.Harmonische)

	AUSSEN	INNEN	
AUSSEN	-42,15 - 29,01 j	0,03 - 0,02 j	
INNEN	0,03 - 0,02 j	-28,43 - 10,49 j	

Instationär: Wirksame Wärmekapazität gem. EN ISO 13786:

$$C_{i} = \frac{T}{2 \cdot \pi} \cdot \left| \tilde{L}_{i,i} + \tilde{L}_{i,e} \right|$$

312,7 kJm⁻¹K⁻¹


VS.

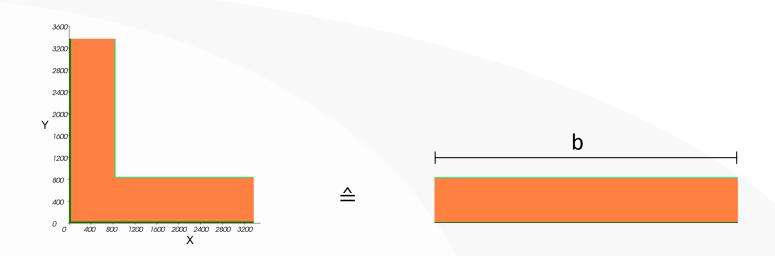
416,5 kJm⁻¹K⁻¹ (=133%) (Außenmaß) 312,3 kJm⁻¹K⁻¹ (Innenmaß)

VOLLZIEGEL | VERGLEICH | VORSCHLAG FÜR 1D



 Besseren Eindruck durch Simulation unter periodisch eingeschwungenen Bedingungen: heißer Sommertag

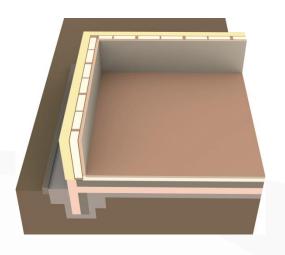
VOLLZIEGEL | VERGLEICH | VORSCHLAG FÜR 1D



Ansatz: gesucht wird Wandbreite b, bei der das Wandstück die gleiche wirksame Wärmespeicherkapazität besitzt, wie die Wandkante

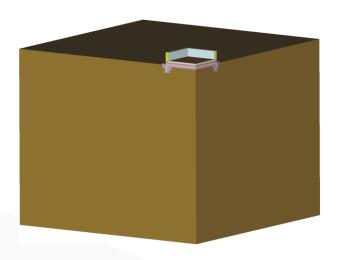
$$b = \frac{C_{i}^{\text{2D}}}{C_{i}} = \frac{\left| \tilde{L}_{i,i}^{\text{2D}} + \tilde{L}_{i,e}^{\text{2D}} \right|}{\left| \tilde{Y}_{i,i} + \tilde{Y}_{i,e} \right|}$$

VOLLZIEGEL | VERGLEICH | VORSCHLAG FÜR 1D


Ansatz: gesucht wird Wandbreite b, bei der das Wandstück die gleiche wirksame Wärmespeicherkapazität besitzt, wie die Wandkante

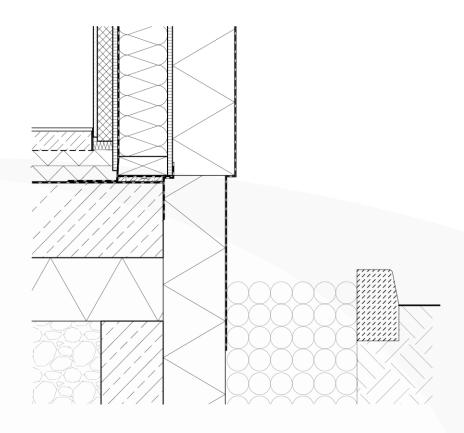
$$b = \frac{C_{i}^{2D}}{C_{i}} = \frac{\left| \tilde{L}_{i,i}^{2D} + \tilde{L}_{i,e}^{2D} \right|}{\left| \tilde{Y}_{i,i} + \tilde{Y}_{i,e} \right|}$$

	Aussenmaß	Innenmaß	Tagesperiode	Jahresperiode
300 300 300 300 300 300 300 300 300 300	6,72m	5,04m	5,05m	5,23m
0 400 1200 1600 2000	4,32m	3,24m	3,26m	3,39m
0 400 800 1200 1600 2000	3,71m	2,78m	2,80m	2,94m


ÜBERSICHT | BEISPIEL | VERGLEICH

- 1D Ansatz nicht sinnvoll
- 2D keine brauchbaren Ergebnisse Einfluss der Ecken!

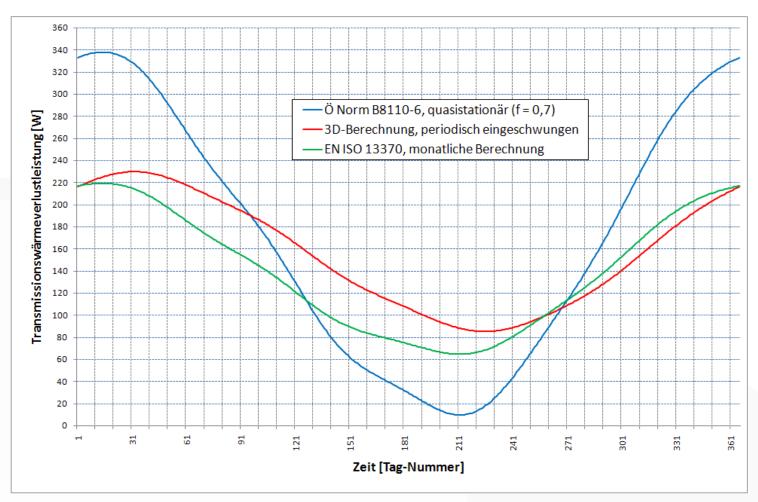
3D



- Weite Bereiche im Umfeld des Gebäudes vom Wärmeabfluss betroffen
- Wärmespeicherung nicht vernachlässigbar!

instationär

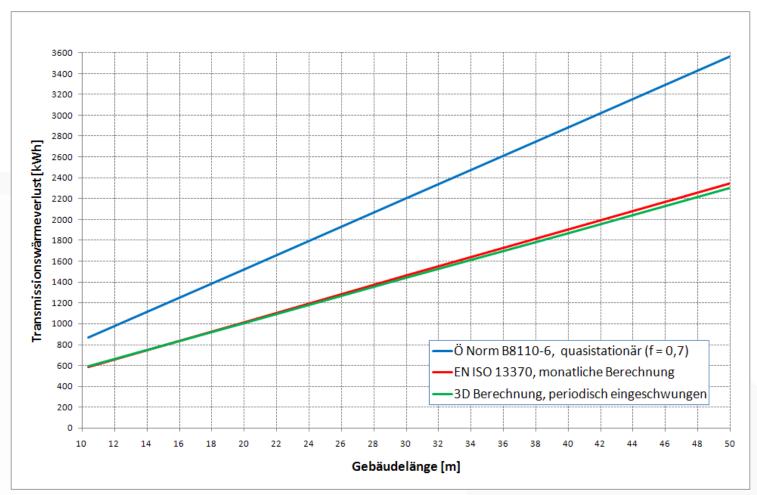
ÜBERSICHT | BEISPIEL | VERGLEICH


3D 2D 3D 3D 3D 3D 3D

Vertikalschnitt

Berechnungsmodell

ÜBERSICHT| BEISPIEL| VERGLEICH



Jahresverläufe der Transmissionswärmeverlustleistung

ÜBERSICHT| BEISPIEL| VERGLEICH

Wärmeverluste über die Heizsaison (November – Februar)

CONCLUSIO

- Bei weithin verbreiteten Modellierung der Gebäudehülle in 1D mit Außenabmessungen wird Wärmespeicherfähigkeit deutlich überschätzt
 - → weitaus bessere Übereinstimmung mit Innenmaß.
- Für die Tagesperiode kann das Innenmaß verwendet werden, für Jahresperiode die präsentierte Formel zur Berechnung von Länge b
- Keine Planungssicherheit bei Verwendung von stationären und quasistationären Näherungsverfahren bezüglich der Berechnung der Wärmeverluste über erdbodenberührte Bauteile (starke Überschätzung der Wärmeverluste)
- Berechnung des thermischen Verhaltens von erdbodenberührten Bauteilen ist in 3D, periodisch eingeschwungener Modellierung (Jahresperiode) in hoher Genauigkeit möglich.
 - → benutzerfreundliche Simulationsprogramme (AnTherm.eu, Thesim.at)

BAUSIM 2012

Vielen Dank für Ihre Aufmerksamkeit FRAGEN?

